sj学习网初中初二内容页

八年级数学上册练习题【五篇】

2020-05-04 19:05:01初二472

  【导语:】这篇关于八年级数学上册练习题【五篇】的文章,是免费特地为大家整理的,希望对大家有所帮助!

  第二章实数

  一、选择题

  1.在下列实数中,是无理数的为()

  (A)0(B)-3.5(C)(D)

  2.A为数轴上表示-1的点,将点A沿数轴移动3个单位到点B,则点B所表示的实数为().

  (A)3(B)2(C)-4(D)2或-4

  3.一个数的平方是4,这个数的立方是()

  (A)8(B)-8(C)8或-8(D)4或-4

  4.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()

  (A)n<m(B)n2<m2

  (C)n0<m0(D)|n|<|m|

  5.下列各数中没有平方根的数是()

  (A)-(-2)(B)3(C)(D)-(2+1)

  6.下列语句错误的是()

  (A)的平方根是±(B)-的平方根是-

  (C)的算术平方根是(D)有两个平方根,它们互为相反数

  7.下列计算正确的是().

  (A)(B)

  (C)(D)—1

  8.估计56的大小应在().

  (A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间

  9.已知,那么()

  (A)0(B)0或1(C)0或-1(D)0,-1或1

  10.已知为实数,且,则的值为()

  (A)3(B)(C)1(D)

  二、填空题

  11.的平方根是____________,()2的算术平方根是____________。

  12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有个。

  13.写出一个3到4之间的无理数。

  14.计算:。

  15.的相反数是______,绝对值是______。

  三、解答题

  16.计算:

  17.某位同学的卧室有25平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?

  18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点A爬到顶点B,则它走过的最短路程为多少?

  19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的低端将滑出多少米?

  20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长=5,宽=4

  1求该长方形土地的面积.精确到0.01

  2若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?

  第三章位置与坐标

  一、选择题

  1.如图1,小手盖住的点的坐标可能是()

  (A)(5,2)(B)(-6,3)

  (C)(―4,―6)(D)(3,-4)

  2.在平面直角坐标系中,下列各点在第二象限的是()

  (A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1)

  3.点P—2,3关于y轴对称的点的坐标是()

  (A)—2,—3(B)3,—2(C)2,3(D)2,—3

  4.平面直角坐标系内,点A(,)一定不在()

  (A)第一象限(B)第二象限(C)第三象限(D)第四象限

  5.如果点P在轴上,则点P的坐标为()

  A0,2B2,0C4,0D0,

  6.已知点P的坐标为,且点P到两坐标轴的距离相等,则点P的坐标为()

  A3,3B3,C6,D3,3或6,

  7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()

  (A)第一象限(B)第二象限(C)第三象限(D)第四象限

  8.若P()在第二象限,则Q在()

  (A)第一象限(B)第二象限

  (C)第三象限(D)第四象限

  9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,

  依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为

  (-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()

  (A)A处(B)B处(C)C处(D)D处

  10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()

  (A)(2,0)(B)(0,-2)(C)(0,)(D)(0,)

  二、填空题

  11.点A在轴上,且与原点的距离为5,则点A的坐标是________.

  12.如图3,每个小方格都是边长为1个单位

  长度的正方形,如果用(0,0)表示A点的

  位置,用(3,4)表示B点的位置,那么

  用表示C点的位置.

  13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标

  为________.

  14.第三象限内的点,满足,,则点的坐标是.

  15.如图4,将AOB绕点O逆时针旋转900,

  得到。若点A的坐标为(),则

  点的坐标为________。

  三、解答题

  16.△ABC在直角坐标系内的位置如图5所示。

  1分别写出A、B、C的坐标

  2请在这个坐标系内画出△A1B1C1,

  使△A1B1C1与△ABC关于轴对称,并写出B1的坐标;

  3请在这个坐标系内画出△A2B2C2,

  使△A2B2C2与△ABC关于原点对称,并写出A2的坐标;;

  17.小亮要从A地赶往C地去参加科技夏令营,他拿出一张地图如图6所示,图上有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,只知道C地在A地的南偏西55°,在B的北偏西70°.

  1请帮助小亮确定C地的位置;

  2若地图的比例尺是l:10000000,

  从A地到C地的实际距离约是多少千米?

  18.在平面直角坐标系中,将坐标为0,0,2,1,2,4,0,3的点依次连结起来形成一个图案.

  1这四个点的横坐标保持不变,纵坐标变成原来的,将所有的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化?

  2纵、横坐标分别变成原来的2倍呢?

  19.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内。具体地点忘了,只知道坐标是6,6,还知道体育场内的两个标志点的坐标分别是A(一2,一3)和B2,一3,小明怎样才能找到小军送他的礼物?

  20.如图7,某公路可视为轴的同一侧有A、B、C三个村庄,要在公路边建一货栈D,向A、B、C三个村庄送农用物资,路线是D→A→B→C→D或D→C→B→A→D.试问在公路边是否存在一点D,使送货路线之和最短?若存在,请在图中画出点D所在的位置,简要说明作法;若不存在,请说明你的理由.

  第四章一次函数

  一、选择题

  1.父亲节,某学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还。”如果用纵轴表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面的图象与上述诗意大致相吻合的是()

  2.已知一次函数,若随着的增大而减小,则该函数图象经过()

  (A)第一、二、三象限(B)第一、二、四象限

  (C)第二、三、四象限(D)第一、三、四象限

  3.若函数y=是正比例函数,则常数m的值是()

  (A)-7(B)±7(C)士3(D)-3

  4.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图1所示,由图中给出的信息可知,营销人员没有销售时的收入是()

  (A)310元(B)300元(C)290元(D)280元

  5.直线与两坐标轴围成的三角形面积是()

  (A)3(B)4(C)12(D)6

  6.下列图形中,表示一次函数=+与正比例函数y=(、为常数,

  且≠0)的图象的是()

  7.如图2所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()

  x-2-10123

  y3210-1-2

  8.已知一次函数(、是常数,且≠0),与的部分对应值如下表所示,那么、的值分别是()

  (A)1,1(B)1,-1

  (C)-1,1(D)-1,-1

  9.点P1(1,1),点P2(2,2)是一次函数=-4+3图象上的两个点,

  且1<2,则1与2的大小关系是().

  (A)1>2(B)1>2>0(C)1<2(D)1=2

  10.在一定范围内,某种产品的购买量吨与单价元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是()

  (A)820元(B)840元(C)860元(D)880元

  二、填空题

  11.函数=的图象经过点P3,-1,则的值为。

  12.写出一个图象不经过第一象限的一次函数:________________。

  13.如果直线不经过第二象限,那么实数的取值范围是_________。

  14.已知点P,一3在一次函数=2+9的图象上,则=。

  15.饮料每箱24瓶,售价48元,买饮料的总价元与所买瓶数之间的函数关系是。

  三、解答题

  16.如图3,OA、BA分别表示甲乙两名学生运动的一次函数的图象,图中和分别表示运动的路程和时间,根据图象请你判断:

  1甲乙谁的速度比较快?为什么?

  答:___________________________________________.

  2快者的速度比慢者的速度每秒快多少米?

  答:____________________________________________.

  17.汽车油箱中的余油量Q升是它行驶的时间小时的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图4:

  1根据图象,求油箱中的余油Q与行驶时间的

  函数关系.

  2从开始算起,如果汽车每小时行驶40千米,当油箱

  中余油20升时,该汽车行驶了多少千米?

  18.已知等腰三角形的周长是20,设底边长为,腰长为,求与的函数关系式,并求出自变量的取值范围.

  19.如图5,两摞相同规格的饭碗整齐地叠放在桌面上,

  请根据图中给的数据信息,解答下列问题:

  (1)求整齐摆放在桌面上饭碗的高度(cm)与饭碗

  数(个)之间的一次函数关系式;

  (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

  20.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水吨,应交水费元.

  1若0<≤6,请写出与的函数关系式.

  2若>6,请写出与的函数关系式.

  3在同一坐标系下,画出以上两个函数的图象.

  4如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?

  第五章二元一次方程组

  一、选择题

  1.在下列方程中,不是二元一次方程的是()

  (A)x+y=3(B)x=3(C)x-y=3(D)x=3-y

  2.已知二元一次方程组,则()

  (A)2(B)3(C)-1(D)5

  3.下列各组数,既是方程的解,又是方程的解是()

  (A)(B)(C)(D)

  4.如果单项式与是同类项,那么的值是()

  (A)-3(B)-1(C)(D)3

  5.方程组的解为,则被遮盖的两个数分别为()

  (A)1,2(B)1,3(C)1,4(D)1,5

  6.小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为张,2元的贺卡为张,那么所适合的一个方程组是()

  (A)(B)

  (C)(D)

  7.如图1,直线1、2的交点坐标可以看作方程组()的解

  (A)(B)(C)(D)

  8.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多。那么驴子原来所驮货物的袋数是()

  (A)5(B)6(C)7(D)8

  9.如图2,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10°。设

  ∠AOC和∠BOC的度数分别为、,则下列方程组正确的为()

  (A)(B)

  (C)(D)

  10.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为()

  (A)20(B)12(C)15(D)10

  二、填空题

  11.解方程组时,比较适宜的消元法是______,解方程组时,比较适宜的消元法是________.

  12.写出一个含的二元一次方程,使它有一个解是,这个方程是______.

  13.野鸡,兔子共36只,共有100只脚,设野鸡只,兔子只,则可列方程组______.

  14.写出满足方程+2=9的一组整数解是。

  15.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,

  从图3中信息可知一束鲜花的价格是元。.

  三、解答题

  16.解下列方程组

  17.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图4所示,求每块地砖的长与宽。

  18.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:

  李小波:阿姨,您好!

  售货员:同学,你好,想买点什么?

  李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.

  售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.

  根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?

  19.某水果商店从某地购进一种水果,根据市场调查

  这种水果在市场上的销售量(吨)与每吨的销售价

  (万元)之间的函数关系如图5所示,求出销售量

  与每吨销售价之间的函数关系式;

  20.一个由父亲、母亲、叔叔和个孩子组成的家庭去某地旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价的优惠.这两家旅行社的原价均为100元.试比较随着孩子人数的变化,哪家旅行社的收费额更优惠?

  第六章数据的分析

  一、选择题

  1.如果3,2,x,5的平均数是4,那么x等于()

  (A)2(B)4(C)6(D)8

  2.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是()

  (A)40,40(B)40,60(C)50,45(D)45,40

  3.一个样本数据按从小到大的顺序的排顺列为13、14、19、、23、27、28、31,其中位数为22,则等于()

  (A)21(B)22(C)20(D)23

  4.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售如下表:

  每人销售量单位:件600500400350300200

  人数单位:人144673

  公司营销人员该月销售的中位数是()

  (A)400件(B)350件(C)300件(D)360件

  5.某服装销售在进行市场占有率的调查时,他最应该关注的是()

  (A)服装型号的平均数(B)服装型号的众数

  (C)服装型号的在中位数(D)最小的服装型号

  6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:

  命中环数(单位:环)78910

  甲命中相应环数的次数2201

  乙命中相应环数的次数1310

  从射击成绩的平均数评价甲、乙两人的射击水平,则()

  (A)甲比乙高(B)甲、乙一样(C)乙比甲高(D)不能确定

  7.5个整数从小到的排列,其中位数是4,如果这组数据的众数是6,则这5个整数的和可能是()

  (A)21(B)22(C)23(D)24

  8.为了让人们感受丢弃塑料袋对环境造成的影响程度,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据上面提供的数据估计本周全班同学家中总共丢弃塑料袋的数量约为()

  (A)900个(B)1080个(C)1260个(D)1800个

  9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()

  (A)4(B)8(C)12(D)20

  10.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的

  (A)平均数B加权平均数C中位数D众数

  二、填空题

  11.一个小组共有6名学生,在一次“引体向上”的测试中,他们分别做了8,10,8,7,6,9个,这6个学生平均每人做了个.

  12.一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.

  13.在一节综合实践课上,六名同学做手工的数量单位:件分别为5,7,3,6,6,4,则这组数据的中位数为件.

  14.下表是食品营养成分表的一部分(每100克食品可食部分营养成分的含量).

  蔬菜种类绿豆芽白菜油菜卷菜菠菜韭菜胡萝卜(红)

  碳水化合物(克)4344247

  在表中提供的碳水化合物的克数所组成的数据中,中位数是,

  平均数

  15.如图1描述了一家鞋店在一段时间里

  销售女鞋的情况:则这组数据的

  众数为,中位数为.

  三、解答题

  16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?

  17.利用计算器计算下列数据的平均数:

  19.48,9.46,9.43,9.49,9.47,9.45,9.44,9.42,9.47,9.46

  2某工人在30天中加工一种零件的日产量为2天51件,3天52件,6天53件,8天54件,7天55件,3天56件,1天59件,求这个工人平均每天加工零件多少件?

  18.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班

  学生的成绩统计如下表:

  成绩(分)71747880828385868890919293

  人数1235453784332

  请根据表中提供的信息解答下列问题:

  (1)该班学生考试成绩的众数是.

  (2)该班学生考试成绩的中位数是.

  (3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处

  于全班中游偏上水平?试说明理由.

  19.某班组织一次数学测试,全班学生成绩的分布情况如图2:

  (1)全班学生数学成绩的众数是______分,

  全班学生数学成绩为众数的有______人。

  (2)全班学生数学成绩的中位数是______分。

  (3)分别计算两个小组超过全班数学成绩

  中位数的人数占全班人数的百分比。

  20.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下单位:年:

  甲厂:4,5,5,5,5,7,9,12,13,15;

  乙厂:6,6,8,8,8,9,10,12,14,15;

  丙厂:4,4,4,6,7,9,13,15,16,16.

  请回答下列问题:

  1分别写出以上三组数据的平均数、众数、中位数;

  2这三个厂家的推销广告分别用了哪一种表示集中趋势的特征数?

  3如果你是顾客,宜选购哪家工厂的产品?为什么?

再来一篇
上一篇:数学作业本八上答案2020 下一篇:人教版初二上册数学期末试卷及答案解析
猜你喜欢